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Abstract 

Sugarcane is the main raw material in the production of sugar in Kenya. The supply of sugarcane affects 

directly the quantity of sugar supplied in the markets. Low supply of sugarcane leads to a decline in the 

amount of sugar supplied to the markets and vice versa. This creates the need of determining the quantity 

of sugarcane supplied by the farmers to the industries to facilitate planning. This study employed Box-

Jenkins predictive models in forecasting the monthly quantity of sugarcane supplied by farmers to the 

industries. This study will be useful to the government and sugar industries in planning by forecasting the 

quantity of sugarcane expected to be supplied by farmers. Secondary data on sugarcane yields was 

analyzed for trend and seasonal components. Kendall’s Tau test was also conducted and it yielded a 

significant p-value (0.001) compared to the test level (α) = 0.05. This study detrended the data and 

seasonal ARIMA model was fitted to the monthly sugarcane data. SARIMA (0,1,1)(0,0,0)12 was 

identified from a list of SARIMA models because it had the lowest Bayesian Information Criterion 

(BIC). The parameter was identified and a hypothesis test, based on Ljung-Box test, was conducted to 

determine if the model fitted the cane data. Ljung-Box statistics = 16.577 < tabulated chi-squared value = 

27.59 suggesting that SARIMA (0,1,1)(0,0,0)12 fitted the monthly sugarcane data. The R2 = 0.574 

indicating that the Box Jenkins model fitted the data. SARIMA (0,1,1)(0,0,0)12 was used to conduct the 

monthly forecasts. It was noted that the sugarcane yields increased with time. 

 

Keywords: Box-jenkins, trend test, forecasting, ljung-box test 

 

1. Introduction 

Kenya’s economy is dominated by the agricultural sector. Only 10% of the land area receives 

adequate rainfall and is able to sustain agricultural activities. Approximately 50% of the total 

agricultural output is meant for domestic consumption. Agricultural products are the major 

contributors to the country’s gross domestic product (GDP). The productivity in the 

agricultural sector has a positive impact in the growth of the economy. To enhance growth of 

the Kenyan economy, it is therefore important to boost agricultural productivity (Jabuya, 

2015) [1]. 

The quantity of sugar produced relies largely on the yields of sugarcane from farmers and the 

cost of production. The average cost of producing a ton of sugar in Kenya is $870 compared to 

$350 in Malawi and $400 in Zambia, Swaziland and Egypt and $ 450 in Sudan. The cost of 

production is $300 up from $270 five years ago (Bitange, 2018; Gerald, 2016) [2, 3]. Though 

production improved from 2017, January to June in 2018 production has been declining due to 

cross cutting factors in the entire sugar factories. Most factories are grappling with the limited 

supply of sugarcane due to the crop shortage which has resulted to the mills operating below 

50% of their crushing capacity. This has led to the increase of the sugar prices in the markets 

(Kenya News Agency, 2018) [4]. 

The Box-Jenkins approach to modeling ARIMA processes was described in a highly 

influential book by statisticians George Box and Gwilym Jenkins in 1970. According to Rob J. 

Hyndman, (2001) [5]: “Box-Jenkins modeling involves the identification of an appropriate 

ARIMA process, fitting the model to the data, and then using the fitted model for forecasting. 

One of the attractive features of the Box-Jenkins approach to forecasting is that ARIMA 

processes are a very rich class of possible models and it is usually possible to find a process 

which provides an adequate description to the data.  
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The original Box-Jenkins modeling procedure involved an 

iterative three-stage process of model selection, parameter 

estimation and model checking. The explanations of the 

process often add a preliminary stage of data preparation and 

a final stage of model application (or forecasting). 

This involves transformations and differencing. 

Transformations of the data (such as square roots or 

logarithms) can help stabilize the variance in a series where 

the variation changes with the level. This often happens with 

business and economic data. Then the data are differenced 

until there are no obvious patterns such as trend or seasonality 

left in the data. The “Differencing” means taking the 

difference between consecutive observations, or between 

observations a year apart. The differenced data are often 

easier to model than the original data. 

Model Selection in the Box-Jenkins framework uses various 

graphs based on the transformed and differenced data to try to 

identify potential ARIMA processes which might provide a 

good fit to the data. Later developments have led to other 

model selection tools such as Akaike’s Information Criterion 

(AIC) and Bayesian Information Criterion (BIC). 

This involves finding the values of the model coefficients 

which provide the best fit to the data. There are sophisticated 

computational algorithms designed to do this. This involves 

testing the assumptions of the model to identify any areas 

where the model is inadequate.  

According to Rob J. Hyndman, 2001 [5], once the model has 

been selected, estimated and checked, it is usually a straight 

forward task to compute forecasts. Of course, this is done by 

computer. Although originally designed for modeling time 

series with ARIMA processes, the underlying strategy of Box 

and Jenkins is applicable to a wide variety of statistical 

modeling situations. It provides a convenient framework 

which allows an analyst to think about the data, and to find an 

appropriate statistical model which can be used to help 

answer relevant questions about the data.”  

Biljana Petrevska (2017) [6] predicted the tourism demand by 

Box Jenkins models in F.Y.R, Macedonia. Several alternative 

specifications were considered in modeling original time 

series. The study used the tourists recorded data for the period 

1956-2013. Upon a care surgery on the ARIMA modeling 

procedures, the researcher identified ARIMA (1,1,1) as the 

most appropriate model that fits the tourism data. The model 

was further engaged in providing the future estimates of 

tourist arrivals. The study found out that there was an 

expectation of tourists to increase by 13.9% in 2018.  

 

2. Methodology 

“B-J involves estimating the parameters of ARIMA (p, d, q) 

model. The structure of an ARMA model is given as: 

 

𝑌𝑡 = ʎ1𝑌𝑡−1 + ⋯ + ʎ𝑝𝑌𝑡−𝑝 + 𝜖𝑡 − 𝜇1𝜀𝑡−1 − ⋯ 𝜇𝑞𝜀𝑡−𝑞  (3.1) 

 

Where ʎ’s are the AR parameters, µ’s are the MA parameters 

and 𝜀 are the errors 

 

2.1 Estimation of d 

This study conducted a Stationarity test to the data by using 

the graphical procedure and conducting a Mann Kendall trend 

test. The Kendall statistic is computed as: 

 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 = ∑ ∑ 𝑠𝑔𝑛(𝑌𝑖 − 𝑌𝑗)𝑛
𝑖=𝑘+1

𝑛−1
𝑗=1   (3.2) 

 

The trend test is carried out on a time series data, 𝑌𝑗, that is 

ranked from j= 1,2,3,…,n-1 and 𝑌𝑖 which is ranked from i= 

1,2,3,…,n. 

Each of the data points 𝑌𝑖′𝑠 is taken to be the reference points 

and they are compared with the other data points.” That is: 
 

𝑠𝑔𝑛(𝑌𝑖 − 𝑌𝑗) = {

+1 𝑖𝑓 𝑌𝑖 − 𝑌𝑗 > 0 

0 𝑖𝑓 0 < ℎ > 𝑝
−1 𝑖𝑓 𝑌𝑖 − 𝑌𝑗 < 0

  (3.3) 

 

According to(Robert Nyamao Nyabwanga et al, 2015): 

“when 𝑛 ≥ 8, the statistic k is approximately normally 

distributed with the mean µ and variance 𝛿2 

“This entails plotting the data over a period time and 

comparing the corresponding Partial autocorrelation function 

and/or the autocorrelation function. This study will check if 

the PAC and ACF do not decay to zero. This would Suggests 

Stationarity. If non stationary will be exhibited the data will 

be differenced to make it stationary. The inverse of the ACF 

will be checked to avoid over differencing (Florian Pelgrin, 

2011) [8]. Further, this study employed the calculation of the 

error statistics in the chosen orders of differencing. The order 

with the lowest error was considered to be the best. This was 

done to avoid over-differencing.” 

 

2.2 Estimation of p and q 

The order of p and q was estimated by comparing several a 

seasonal ARIMA models Bayesian Information Criterion 

(BIC). The model with the lowest BIC was considered to be 

appropriate (Florian Pelgrin, 2011) [8]. According to Box-

Jenkins (1976), the MLE can be used in the estimation 

process of the AR and MA parameters.  

 

2.3 Diagnostic checking 

This study conducted diagnostic check by checking the 

Autocorrelation Plots of the residuals. This study checked if 

large correlation values could be identified. The correlations 

were determine if they were small hence determining the 

basis of choosing the model to conduct forecasting. Further, 

this study conducted the residual analyzing by employing the 

Ljung-Box tests as an additional step in determining the 

suitability of the model. Ljung-Box (S) statistics was 

computed as indicated here under. 
 

𝑆 = 𝑛(𝑛 + 2) ∑ [
𝑒̂𝑘

2

𝑛−𝑘
]𝐿

𝑘=1   (3.4) 

 

Where 𝑒̂𝑘 the estimated autocorrelation of the series at lag k 

and L is the number of lags being tested in the analysis of the 

sugarcane yields data 

The hypothesis tested included: 
 

H0: The model fits the data 

HA: The model does not fit the data 
 

The hypotheses were tested at 5% significance level. In 

Ljung-Box test the null hypothesis is rejected when the 

calculated chi-squared value, at h degrees of freedom, exceeds 

the tabulated value. In this case h degrees of freedom are 

estimated such that they account for the estimated model 

parameters, that is ℎ = 𝐿 − 𝑝 − 𝑞. Where p and q are the 

orders of the autoregressive and moving average models 

(James, 2018) 
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2.4 Conducting P-Step Ahead Forecast 

After the model had been fitted and its adequacy determined, 

the chosen model was used to forecast the future trend of 

sugarcane yields.  

 

3. Results 

3.1 Trend Test 

This study sought to determine if the data had a seasonal 

trend. The collected data has a seasonality of 12 months. The 

Kendall’s trend test takes into account the seasonality of the 

SCYs data. The hypotheses were tested were: 

 

H0: The SCYs data has no trend 

HA: The SCYs data has a trend 

 

The hypothesis was tested at 5% significance level. Table 6 

below shows the results of Kendall tau trend test. 

 
Table 1: Kendall Tau Test of Trend 

 

Parameter Estimate 

Kendall’s Tau 0.640 

P-Value < 0.001 

Alpha(α) 0.05 

 

Since the computed P-value = < 0.001 is < significance level 

(α) = 0.05, we reject the null hypothesis in favor of the 

alternative hypothesis. Therefore, this study has established 

that the monthly sugarcane yields data had a trend. 

 

3.2 Determination of the Order of differencing 

To avoid over differencing, this study ventured into the 

analysis of the error statistics of the different orders of 

differencing. The error statistics are displayed in the table 

below: 

Model Parameters 

ARIMA (0,0,0)(0,1,0) is represented by A 

ARIMA (0,1,0)(0,0,0) is represented by B 

ARIMA (0,1,0)(0,1,0) is represented by C 
 

Table 2: Model Differencing Statistics 
 

Model RMSE MAPE MAE 

A 8719.845 10.194 6625.798 

B 6381.423 4.993 3211.702 

C 9600.868 8.846 5797.471 

 

Since the errors in model B are lower, that is 6381.423, 4.993 

and 3211.702 for the RMSE, MAPE and MAE respectively, 

the order of non-seasonal differencing is 1 and that of 

seasonal differencing is zero (no seasonal differencing is 

required). After differencing, this study conducted 

Stationarity test to determine if the data was stationary. The 

Stationarity test is displayed in the table below. 

 
Table 3: Dickey-Fuller Test of Stationarity 

 

Tau (0bserved value) -7.182 

Tau (critical value) -3.420 

p-value (one tailed) <0.0001 

α 0.05 

 

Since the computed p-value = < 0.0001 is less than the 

significance level = 0.05, the null hypothesis was reject and 

this study concluded that the differenced SCYs data was 

stationary. 

 

3.3 Tentative Identification of the Model from ARIMA 

Class 

This step involved the process of identifying the suitable 

seasonal ARIMA (p,d,q)(P,D,Q)s model to forecast the 

monthly SCYs. This study had 12 months which repeated 

yearly. Therefore, s = 12 in this study. 

 
Table 4: BICs and Error Statistics of the Considered SARIMA models 

 

(p,d,q)(P,D,Q)s BICs MAPE MAE (p,d,q)(P,D,Q)12 BICS MAPE MAE 

(0,1,0)(0,0,0)12 17.569 4.993 3211.702 (2,1,2)(1,0,1)12 17.271 4.531 2910.775 

(0,1,0)(1,0,0)12 17.589 5.127 3298.411 (1,1,1)(2,0,0)12 17.230 4.435 2851.422 

(0,1,0)(1,0,1)12 17.615 5.137 3302.330 (1,1,1)(2,0,2)12 17.245 4.482 2874.407 

(0,1,1)(0,0,0)12 17.164 4.533 2916.031 (0,1,2)(2,0,2)12 17.279 4.473 2875.221 

(0,1,1)(1,0,0)12 17.192 4.529 2913.230 (0,1,2)(2,0,0)12 17.232 4.436 2852.460 

(0,1,1)(1,0,1)12 17.209 4.575 2939.717 (0,1,2)(0,0,0)12 17.182 4.441 2858.769 

(1,1,1)(0,0,0)12 17.179 4.439 2857.159 (2,1,0)(0,0,2)12 17.260 4.581 2941.605 

(1,1,1)(1,0,0)12 17.207 4.439 2856.920 (2,1,0)(2,0,0)12 17.262 4.556 2926.673 

(1,1,1)(1,0,1)12 17.220 4.477 2877.950 (2,1,0)(2,0,1)12 17.276 4.615 2961.352 

(0,1,2)(0,0,0)12 17.182 4.441 2858.769 (2,1,0)(2,0,3)12 17.319 4.636 2970.863 

(0,1,2)(1,0,0)12 17,210 4.441 2858.349 (2,1,1)(0,0,2)12 17.251 4.499 2888.852 

(0,1,2)(1,0,1)12 17.224 4.476 2877.778 (2,1,2)(2,0,3)12 17.313 4.514 2893.191 

(2,1,2)(0,0,0)12 17.230 4.499 2893.752 (2,1,2)(3,0,0)12 17.279 4.592 2946.989 

(2,1,2)(1,0,0)12 17258 4.499 2893.485 (2,1,2)(2,0,4)12 17.364 4.542 2942.941 

 

This study chose the seasonal ARIMA model based on the 

lowest BIC. From table 4 above it can be deduced that 

seasonal ARIMA (0,1,1)(0,0,0)12 has the lowest BIC and 

hence was considered to be the most appropriate model. 

Seasonal ARIMA (0,1,1)(0,0,0)12 has MAPE = 4.533 and 

MAE = 2916.031. 

 

3.4 Estimation of Parameters in the Identified Model 

This stage involves the estimation of the parameters and the 

standard errors of the identified seasonal ARIMA 

(0,1,1)(0,0,0)12. 
 

Table 5: Model Parameter Estimate and Standard Error 
 

 Estimate SE 

Difference 1  

MA Lag 1 0.664 0.050 

 

The series took a difference of order 1. The AR, SAR and 

SMA were not included in the model hence not indicated in 

the table 11 above. The order of the MA was 1 and the 

identified parameter was 0.664. The estimated standard error 

is 0.05. The SARIMA (0,1,1)(0,0,0)12 model took the 

following structure. 

http://www.mathsjournal.com/
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𝑌̂𝑡 = 𝜇 + 𝜀𝑡 − 𝛽1𝜀𝑡−1  

𝑌̂𝑡 = 𝜇 + 𝜀𝑡 − 0.664𝜀𝑡−1  (4.2) 

 

Where µ represents the average of the SCYs 

 

 

3.5 Diagnostic Check of the Identified Model 

After the tentative identification of the B-J model and 

computation of the parameters of the model, diagnostic check 

was conducted to ascertain that the model actually fits the 

data. This study conducted the diagnostic check by inspecting 

the sample ACF of the 𝑒̂𝑡. 

 

 
 

Fig 1: SCYs Residual ACF 

 

In figure 6 above it can be observed that the residual ACFs 

are within the LCL and UCL. Therefore no residuals are 

outside the limits indicating a good fit. Further this study 

conducted the Ljung-Box to confirm the above. 

The hypotheses that were tested are: 

 

H0: The model fits the SCYs data 

HA: The model does not fit the SCYs data 

 
Table 6: Ljung-Box Statistics 

 

Model Fit Statistics Ljung-Box 

R2 Statistics df Sig. 

0.574 16.577 17 0.483 

 

As indicated in table 6, The Ljung-Box test statistic 𝑛(𝑛 +

2) ∑ [
𝑒̂𝑘

2

𝑛−𝑘
]𝑚

𝑘=1 = 16.577 and the tabulated chi-squared value 

= 27.59. It can be noted that Ljung-Box statistics < tabulated 

value. Therefore, we fail to reject the null hypothesis and 

reject the alternative hypothesis. We can conclude that the 

model fits the SCYs data. Hence the suitable B-J model, as 

identified in this study, is seasonal ARIMA 0,1,1)(0,0,0)12. 

The figure below indicates the in sample forecasts and the 

original SCYs data. 

 

 
 

Fig 2: In Sample Forecasts using the Developed B-J Model 

 

3.6 Forecasting using Box-Jenkins model 

The developed seasonal ARIMA (0,1,1) (0,0,0)12 model was 

identified in section 4.3 as the most appropriate model in 

describing the structure of the data. Therefore this study 

employed it in conducting ahead forecasts. 

http://www.mathsjournal.com/
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Fig 3: A Plot of the Forecasted Values 

 

Figure 3 above indicates the plots of the forecasted values. 

The figure indicates an expected increase in the amount of 

sugarcane to be supplied. The forecasts are within the UCL 

and the LCL indicating a good estimate of the future values. 

The individual values of the forecasted SCYs are indicated in 

the table 7 below. 

 
Table 7: Forecasted Values Using the Chosen B-J Model 

 

Month, Year Forecast Month, Year Forecast 

Jan 2020 72724.53 Sep 2022 75127.49 

Feb 2020 72967.45 Oct 2022 75054.50 

Mar 2020 73170.88 Nov 2022 74942.02 

Apr 2020 73334.82 Dec 2022 74790.06 

May 2020 73459.27 Jan 2023 75072.46 

Jun 2020 73544.23 Feb 2023 75315.38 

Jul 2020 73589.71 Mar 2023 75518.81 

Aug 2020 73595.70 Apr 2023 75682.75 

Sep 2020 73562.20 May 2023 75807.20 

Oct 2020 73489.21 Jun 2023 75892.16 

Nov 2020 73376.74 Jul 2023 75937.64 

Dec 2020 73224.77 Aug 2023 75943.63 

Table 7 indicates an expected change in sugarcane yields. 

 

4. Conclusions 

Kendall Tau test of trend was also conducted. The p-value = < 

0.001 is less than the significance level (α) = 0.05. This 

formed the basis of rejecting the null hypothesis and deducing 

that the SCYs data had a trend. 

This study fitted the SARIMA (p,d,q)(P,D,Q)s model to the 

SCYs data. This study fitted a Box-Jenkins model. A 

difference of order 1 was conducted to make the data 

stationary. After this, Stationarity test was conducted using 

the Dickey-Fuller test. The p-value = < 0.001 was less than 

the significance level = 0.05 indicating that the data was 

stationary. This study went ahead and identified, tentatively, a 

B-J model from the ARIMA class models. Several models 

were compared and it was realized that SARIMA 

(0,1,1)(0,0,0)12 had the lowest BIC =17.164. The 

corresponding MAPE and MAE for the chosen model were 

4.533 and 2916.031 respectively. The parameter of the chosen 

model was identified. It included the MA part only, which is 

at lag 1 we had a parameter of 0.664. Diagnostic check was 

conducted to determine if the chosen model actually fitted the 

data. Ljung-Box test was employed. It was noted that Ljung-

Box statistic = 16.577 < the tabulated chi-squared value = 

27.59. Therefore this study concluded that the model fitted the 

SCYs data. 

 

5. Recommendations 

 This employed the Mann Kendall trend test to determine 

if the data had a trend. Future researchers should employ 

other trend test methods like the sen’s slope and Cox-

Stuart trend estimation process to determine if the same 

results will be attained. 

 This study fitted the Box-Jenkins model to the data and 

determined the respective coefficient of determination. 

Future researchers should fit the Holt-Winters seasonal 

additive model to determine if the it will perform better 

than the Box-Jenkins SARIMA (0,1,1)(0,0,0)12 models. 

 The methods employed in this study could also be 

replicated to other statistical analysis of time series data 

like in the analysis of tomato yields, among others. 
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