

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

2ND YEAR 2ND SEMESTER 2016/2017 ACADEMIC YEAR

MAIN

REGULAR

COURSE CODE: SPH 205

COURSE TITLE: Mathematical Methods For Physics Ii

EXAM VENUE:

STREAM: EDUCATION

DATE:

EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A

QUESTION 1(30 MARKS)

a)	(i) Given that $z = x^2 y^2 + 3xy$, determine $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$	(2 marks)
	(ii) Write an equation for the total differential of the function $f = f(x_1, x_2, x_3)$	$(\dots x_n)$ (1 mark)
b)	Evaluate $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^{10}$ leaving your answer in the form $a + ib$.	(3 marks)
c) d)	Show that the complex-valued function $f(z) = z^2$ is analytic. Define the following terms.	(2 marks)
	(i) Power series	(1 mark)
	(ii) Essential singularity	(2 marks)
e)	State the fundamental theorem of algebra. $(2, 2, 0, 1)$	(1 mark)
f)	(i)Find the determinant of $A = \begin{pmatrix} 3 & 2 & 0 & 1 \\ 4 & 0 & 1 & 2 \\ 3 & 0 & 2 & 1 \\ 9 & 2 & 3 & 1 \end{pmatrix}$	(4 marks)
	(ii) Given the system of linear equations $a_1x_1 + a_2x_2 = a_3$	
	$b_1x_1 + b_2x_2 = b_3$, obtain an expression for x_2 in form of a ratio of two determinants. (3 marks)	
g)	Distinguish between a Hilbert space and the Gram-Schmidt orthogonalization. (2 marks)	
h)	Show that in a Fourier series of a function $f(x)$ in the interval $[-P P]$, the Fourier	
	coefficient a_0 is given by	

$$a_0 = \frac{1}{P} \int_{-P}^{P} f(x) dx$$
 (4 marks)

(3 marks)

i) (i) Distinguish between a first order linear and homogeneous ordinary differential equation. (2 marks)

(ii) Solve the equation $\frac{dy}{dx} + y = e^x$

SECTION B

Answer any TWO questions in this section

QUESTION 2(20 MARKS)

a) Determine the partial second derivatives of $f(x, y) = e^{2x} \cos(y - x)$, hence show that the second partial derivative is a commutative operation. (9 marks)

- b) Derive the De Moivre's theorem.
- c) Calculate the cube root of 8.

QUESTION 3 (20 MARKS)

- a) Derive the Cauchy Riemann Equations from first principles. (9 marks)
- b) Expand $\frac{1}{(Z+1)(Z-3i)}$ in a Laurent series about the point Z = -1 (7 marks)

c) Show that the set
$$S = \left\{ \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \right\}$$
 is orthonormal. (4 marks)

QUESTION 4 (20 MARKS)

- a) (i) Name an eigen value equation in quantum mechanics. (1 mark) (ii) Let $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$. Find the eigen values of *B* and the associated eigenvectors. (12 marks) b) Show that the differential equation
- b) Show that the differential equation

 $(x^{2} + y^{2})dx + 2xydy = 0$ is exact,

hence solve it.

QUESTION 5 (20 MARKS)

a) Diagonalize the matrix ^p -q / q p where p and q are real numbers and q ≠ 0 (14 marks)
b) Define a Fourier series of a function f(x). (2 marks)
c) Given the box function which can represent a single pulse, f(x) = {1, -a ≤ x ≤ a / 0, x > a}, find the Fourier transform of f(x) (4 marks)

(7 marks)