JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
$2^{\text {ND }}$ YEAR $2^{\text {ND }}$ SEMESTER 2016/2017 ACADEMIC YEAR
MAIN
REGULAR

COURSE CODE: SPH 205
COURSE TITLE: Mathematical Methods For Physics Ii
EXAM VENUE:

DATE:

TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

$$
\text { Page } \mathbf{1} \text { of } \mathbf{3}
$$

SECTION A

QUESTION 1(30 MARKS)

a) (i) Given that $z=x^{2} y^{2}+3 x y$, determine $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$
(ii) Write an equation for the total differential of the function $f=f\left(x_{1}, x_{2}, \ldots x_{n}\right)$
b) Evaluate $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{10}$ leaving your answer in the form $a+i b$.
c) Show that the complex-valued function $f(z)=z^{2}$ is analytic.
d) Define the following terms.
(i) Power series
(ii) Essential singularity
e) State the fundamental theorem of algebra.
f) (i)Find the determinant of $A=\left(\begin{array}{llll}3 & 2 & 0 & 1 \\ 4 & 0 & 1 & 2 \\ 3 & 0 & 2 & 1 \\ 9 & 2 & 3 & 1\end{array}\right)$
(ii) Given the system of linear equations

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}=a_{3} \\
& b_{1} x_{1}+b_{2} x_{2}=b_{3}, \text { obtain an expression for } x_{2} \text { in form of a ratio of two determinants. }
\end{aligned}
$$

(3 marks)
g) Distinguish between a Hilbert space and the Gram-Schmidt orthogonalization. (2 marks)
h) Show that in a Fourier series of a function $f(x)$ in the interval $[-P P]$, the Fourier coefficient a_{0} is given by

$$
\begin{equation*}
a_{0}=\frac{1}{P} \int_{-P}^{P} f(x) d x \tag{4marks}
\end{equation*}
$$

i) (i) Distinguish between a first order linear and homogeneous ordinary differential equation.
(2 marks)
(ii) Solve the equation $\frac{d y}{d x}+y=e^{x}$
(3 marks)

SECTION B

Answer any TWO questions in this section

QUESTION 2(20 MARKS)

a) Determine the partial second derivatives of $f(x, y)=e^{2 x} \cos (y-x)$, hence show that the second partial derivative is a commutative operation.
(9 marks)
b) Derive the De Moivre's theorem.
c) Calculate the cube root of 8 .

QUESTION 3 (20 MARKS)

a) Derive the Cauchy Riemann Equations from first principles.
(9 marks)
b) Expand $\frac{1}{(Z+1)(Z-3 i)}$ in a Laurent series about the point $Z=-1$
c) Show that the set $S=\left\{\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right\}$ is orthonormal.

QUESTION 4 (20 MARKS)

a) (i) Name an eigen value equation in quantum mechanics.
(1 mark)
(ii) Let $B=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & 1\end{array}\right)$. Find the eigen values of B and the associated eigenvectors.
(12 marks)
b) Show that the differential equation

$$
\left(x^{2}+y^{2}\right) d x+2 x y d y=0 \text { is exact }
$$

hence solve it.
(7 marks)

QUESTION 5 (20 MARKS)

a) Diagonalize the matrix $\left(\begin{array}{cc}p & -q \\ q & p\end{array}\right)$ where p and q are real numbers and $q \neq 0$
b) Define a Fourier series of a function $f(x)$.
(14 marks)
c) Given the box function which can represent a single pulse,

$$
f(x)=\left\{\begin{array}{l}
1,-a \leq x \leq a \\
0, x>a
\end{array}, \text { find the Fourier transform of } f(x)\right.
$$

