

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF INFORMATICS AND INNOVATTIVE SYSTEMS UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF COMPUTER FORENSICS AND SECURITY

SPECIAL RESITS EXAMINATIONS

ACADEMIC YEAR 2020/2021

MAIN REGULAR

COURSE CODE: IIT 3218

COURSE TITLE: NUMBER THEORY

EXAM VENUE: STREAM: (BSc.)

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

numbers.

QUESTION ONE $(COMPULSORY)$ [30 MARKS]	
(a). Define a rational number and a prime number.	(4 marks
(b). Describe a good integer.	(3 marks
(c). State the well-ordering axiom.	(3 marks
(d). State the principal of mathematical induction.	(4 marks
(e). Show that there is no rational number whose square is 3.	(6 marks
(f). Define Diophantine equation and hence solve $23x + 29y = 1$.	(5 marks
(g). Determine all positive integers n for which $n + 1 n^2 + 1$.	(5 marks
2 (a). Prove that if $a^k \equiv 1 \mod n$, where a is a positive integer k	$\leq n$,
then a is relatively prime to the positive integer n .	(18 marks
(b). Describe the Legendre symbol as used in number theory.	(2 marks
3 (a). Prove that for all $g \neq 0$ in \mathbb{Z}_p , g is such that	
$g^{p-1} \equiv 1 \bmod p.$	(10 marks
(b). Let $gcd(a, n) = 1$. Prove that for a ϕ -function mapping $\mathbb N$	I to ℂ,
we have $a^{\phi(n)} \equiv 1 \mod n$.	(10 marks
4. State and prove the Bachet-Bezout theorem.	(20 marks
5. (a). Prove that every integer greater than one is a product of prime	

(b). State two applications of number theory to computing.

(18 marks)

(2 marks)