• Login
  • Help Guide
View Item 
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
  •   JOOUST IR Home
  • Journal Articles
  • School of Biological, Physical, Mathematics & Actuarial Sciences
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of Sampling Bias on the Family of Exponential Random Graph Models

Thumbnail
View/Open
Warutumo_Effect of Sampling Bias on the Family of Exponential Random Graph Models.pdf (588.4Kb)
Publication Date
2019
Author
Warutumo, Paul Wachiuri
Orwa, George Otieno
Muga, Zablon Maua
Type
Article
Metadata
Show full item record
Abstract/Overview

There is increased use and application of exponential random graphs emanating from use of big data and other techniques. This study sought to establish how sampling bias affects the exponential random graphs. This study was guided by the following objectives: to specify and estimate exponential random graph models with biased sampling, to determine the maximum likelihood estimate for family of exponential random graphs with sampling bias., to determine the suitable sampling method for exponential random graphs and to use the model effect in real life data; a case of opinion polls in Kenya. The study used R software for data analysis from IPSOS Synovate on opinion polls of 2017 in Kenya and realized that there is an intractable Pseudo likelihood for the family of exponential random graphs which was analyzed using the Markov Chain Monte Carlo simulation approach. The study revealed that gender and political affiliation affected the voting pattern of a person in an election at a rate 90.07% and 95.72% respectively. The study recommends use of Metropolis Hastings Monte Carlo simulation in handling the exponential random graphs.

Subject/Keywords
Exponential random graph; exponential random graph model; maximum likelihood estimate
Publisher
International Journal of Statistics and Applied Mathematics
ISSN
2456-1452
Permalink
http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/9503
Collections
  • School of Biological, Physical, Mathematics & Actuarial Sciences [254]

Browse

All of JOOUST IRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us

Copyright © 2023-4 Jaramogi Oginga Odinga University of Science and Technology (JOOUST)
P.O. Box 210 - 40601
Bondo – Kenya

Useful Links

  • Report a problem with the content
  • Accessibility Policy
  • Deaccession/Takedown Policy

TwitterFacebookYouTubeInstagram

  • University Policies
  • Access to Information
  • JOOUST Quality Statement