On necessary and sufficient conditions for rationality of operator norm bounds in measure spaces

dc.contributor.authorOkelo, Benard N.
dc.date.accessioned2018-11-14T12:35:53Z
dc.date.available2018-11-14T12:35:53Z
dc.date.issued2016-11
dc.descriptionConference of the Southern Africa Mathematical Sciences Association - SAMSA2016 November 21 - 24, 2016, University of Pretoria, Pretoria, South Africaen_US
dc.description.abstractNorm bounds are useful properties of operators with interesting applications in operator algebras and quantum mechanics. Rationality of these norm bounds is very important in the study of operators in measure spaces. As a function of the perimeter $s,\mathcal{L}_{\mu }(s)$ is differentiable, nonincreasing, convex on $(0,\infty )$, and tends to $\mu (\{0\})$ as $s\rightarrow \infty $ and to $\mu ((-1,1))$ as $s\rightarrow +0.$ In this presentation, we show that for all $n\in N $, $$\displaystyle{\underline{\mathcal{B}} (n;q,\mu ):=b_{n}\mathcal{L}_{\mu }^{1/q}(nq)\leq \mathcal{B} (n;q,\mu )\leq} \displaystyle{\mathcal{B}_{n}\mathcal{L}_{\mu }^{1/q}((n-0.1)q)}\displaystyle{=:\overline{\mathcal{B}} (n;q,\mu )},$$ where $\displaystyle{b_{n}:=\frac{(n+0.1)^{0.1}}{2^{n}n!}}$, $\displaystyle{\mathcal{B}_{n}:=\frac{1}{2^{n}(n-0.1)^{0.1}(n-1)!}}$. Moreover, we give various new conditions for rationality of operator norm bounds in measure spaces.en_US
dc.identifier.urihttp://www.biomathforum.org/samsa-congress.org/samsa/index.php/abstracts/article/view/63
dc.identifier.urihttp://ir.jooust.ac.ke:8080/xmlui/handle/123456789/2726
dc.language.isoenen_US
dc.subjectRationalityen_US
dc.subjectNorm boundsen_US
dc.subjectMeasure spaceen_US
dc.titleOn necessary and sufficient conditions for rationality of operator norm bounds in measure spacesen_US
dc.typeOtheren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Benard_On necessary and sufficient conditions for rationality of operator norm.pdf
Size:
31.57 KB
Format:
Adobe Portable Document Format
Description:
Abstract

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: