Determining Equations of Fourth Order Nonlinear Ordinary Differential Equation

dc.contributor.authorAminer, T.J
dc.date.accessioned2021-04-15T06:32:42Z
dc.date.available2021-04-15T06:32:42Z
dc.date.issued2018
dc.description.abstractDetermining Equations are linear partial differential equations. The equation to be solved is subjected to extension generator. The coefficient of unconstrained partial derivatives is equated to zero and since the equations are homogeneous their solutions form vector space [1]. The determining equations obtained leads to n-parameter symmetries.en_US
dc.identifier.urihttp://ir.jooust.ac.ke:8080/xmlui/handle/123456789/9477
dc.language.isoenen_US
dc.publisherResearchGateen_US
dc.subjectInfinitesimal Generatorsen_US
dc.subjectProlongationen_US
dc.subjectLie Symmetryen_US
dc.subjectOrdinary Differential Equationen_US
dc.subjectDetermining Equationen_US
dc.titleDetermining Equations of Fourth Order Nonlinear Ordinary Differential Equationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeterminingEquationsofFourthOrderNonlinearOrdinaryDifferentialEquation.pdf
Size:
362.6 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: