On Compact Operators whose Norms are Eigenvalues
| dc.contributor.author | Owino, Julia Ndong'a | |
| dc.date.accessioned | 2023-02-07T12:53:34Z | |
| dc.date.available | 2023-02-07T12:53:34Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | The class of compact operators is fundamental in operato_Lllle~+Y.• Char-acterization of compact operators acting on different sp~ces has been fas-cinating to many Mathernaticians., Many properties such as bounded¬ness, completeness, compactness on finite-dimensional Banach spaces are . - consequences of the Heine-Borel theorem, which implies that the closed unit ball in a finite-dimensional Banach space is compact, which may --, not apply to infinite-dimensional spaces. Thus, the problem of compact- ness of operators is still open. Lin, established that the norm of a linear compact operator •r is an eigenvalue for the operator if it satisfies the Daugavet equation. So the question whether every linear compact op¬erator can be approximated by linear compact operator whose norms are eigenvalues has not been fully investigated. The objectives of this study are to: investigate completeness, establish the necessary and suffi¬cient conditions for invertibility and investigate convergence of compact operators whose norms are eigenvalues, Investigation on completeness involved the use of Theorem of completeness and Gram-Schmidt orthog¬onalization. Open mapping Theorem and direct sum decomposition have been used to study invertibility. The study of convergence employed ten¬sor products and Riesz representation Theorem. In this study, we have established that if {Tn}nEN is an orthonormal sequence of compact oper¬ators whose norms are eigenvalues, then {Tn}nEN is complete if and only if (T, Tn) = 0, \:/ n E N implies T = 0. Moreover, the projective (re-spectively, injective) tensor product of Tn and Sn tends to the projective (respectively, injective) tensor product of T and S. The results may be useful in many disciplines of science and engineering. | en_US |
| dc.identifier.uri | http://ir.jooust.ac.ke:8080/xmlui/handle/123456789/11778 | |
| dc.language.iso | en | en_US |
| dc.publisher | JOOUST | en_US |
| dc.title | On Compact Operators whose Norms are Eigenvalues | en_US |
| dc.type | Thesis | en_US |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
